Mutation-periodic quivers, integrable maps and associated Poisson algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation-periodic quivers, integrable maps and associated Poisson algebras.

We consider a class of map, recently derived in the context of cluster mutation. In this paper, we start with a brief review of the quiver context, but then move onto a discussion of a related Poisson bracket, along with the Poisson algebra of a special family of functions associated with these maps. A bi-Hamiltonian structure is derived and used to construct a sequence of Poisson-commuting fun...

متن کامل

Cluster Mutation-Periodic Quivers and Associated Laurent Sequences

We consider quivers/skew-symmetric matrices under the action of mutation (in the cluster algebra sense). We classify those which are isomorphic to their own mutation via a cycle permuting all the vertices, and give families of quivers which have higher periodicity. The periodicity means that sequences given by recurrence relations arise in a natural way from the associated cluster algebras. We ...

متن کامل

Poisson Structures for Dispersionless Integrable Systems and Associated W-Algebras

In analogy to the KP theory, the second Poisson structure for the dispersionless KP hierarchy can be defined on the space of commutative pseudodifferential operators L = p + ∑n−1 j=−∞ ujp . The reduction of the Poisson structure to the symplectic submanifold un−1 = 0 gives rise to the w-algebras. In this paper, we discuss properties of this Poisson structure, its Miura transformation and reduct...

متن کامل

Quivers and Poisson Structures

We produce natural quadratic Poisson structures on moduli spaces of representations of quivers. In particular, we study a natural Poisson structure for the generalised Kronecker quiver with 3 arrows.

متن کامل

Quantum algebras and quivers

Given a finite quiver Q without loops, we introduce a new class of quantum algebras D(Q) which are deformations of the enveloping algebra of a Lie algebra which is a central extension of sln(Π(Q)) where Π(Q) is the preprojective algebra of Q. When Q is an affine Dynkin quiver of type A, D or E, we can relate them to Γ-deformed double current algebras. We are able to construct functors between d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

سال: 2011

ISSN: 1364-503X,1471-2962

DOI: 10.1098/rsta.2010.0318